1.4模型实现
import torch
import torchvision # 常用数据集包
import torchvision.transforms as transforms # 数据转归一化transform = transforms.Compose( # 自定义一个转换器,先变成张量,再归一化(每个通道的均值序列,标准差序列)
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # (0-0.5)/0.5 = -1
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True,
transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True,
num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True,
transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False,
num_workers=2)
# num_workers根据计算机的CPU和内存来设置,充足可以设置多一些
# 设为0表示不用内存
classes = ('plane','car', 'bird','cat','deer', 'dog','frog','horse','ship','truck')Files already downloaded and verified
Files already downloaded and verified

最后更新于
这有帮助吗?