《第九章》
9.1图像增广
import gc
gc.collect() # 清理内存train_with_data_aug(no_aug, no_aug) ——————————————————————————————结果—————————————————————— training on [gpu(0)] epoch 1, loss 1.3485, train acc 0.522, test acc 0.556, time 62.9 sec epoch 2, loss 0.7872, train acc 0.722, test acc 0.705, time 65.0 sec epoch 3, loss 0.5654, train acc 0.802, test acc 0.738, time 67.0 sec epoch 4, loss 0.4175, train acc 0.853, test acc 0.777, time 67.9 sec epoch 5, loss 0.3043, train acc 0.895, test acc 0.789, time 67.8 sec epoch 6, loss 0.2183, train acc 0.923, test acc 0.799, time 68.2 sec epoch 7, loss 0.1547, train acc 0.946, test acc 0.810, time 68.5 sec epoch 8, loss 0.1150, train acc 0.960, test acc 0.799, time 68.9 sec epoch 9, loss 0.0814, train acc 0.972, test acc 0.809, time 69.1 sec epoch 10, loss 0.0725, train acc 0.974, test acc 0.806, time 70.2 seccomplex_aug = gdata.vision.transforms.Compose([ gdata.vision.transforms.RandomFlipLeftRight(), gdata.vision.transforms.RandomHue(0.5), gdata.vision.transforms.ToTensor()]) train_with_data_aug(complex_aug, no_aug) ————————————————————————————————结果———————————————————————— training on [gpu(0)] epoch 1, loss 1.5822, train acc 0.446, test acc 0.496, time 69.3 sec epoch 2, loss 0.9240, train acc 0.673, test acc 0.676, time 68.4 sec epoch 3, loss 0.6791, train acc 0.764, test acc 0.739, time 68.6 sec epoch 4, loss 0.5490, train acc 0.810, test acc 0.728, time 69.8 sec epoch 5, loss 0.4555, train acc 0.842, test acc 0.777, time 70.5 sec epoch 6, loss 0.3836, train acc 0.868, test acc 0.762, time 70.2 sec epoch 7, loss 0.3227, train acc 0.889, test acc 0.795, time 69.8 sec epoch 8, loss 0.2728, train acc 0.906, test acc 0.807, time 70.0 sec epoch 9, loss 0.2392, train acc 0.918, test acc 0.823, time 70.8 sec epoch 10, loss 0.1931, train acc 0.934, test acc 0.820, time 70.1 sec
方法
涵义
9.2微调
9.3目标检测和边界框
9.4锚框
9.5多尺度目标检测
9.6目标检测数据集(皮卡丘)
9.7单发多框检测
9.8区域卷积神经网络(R-CNN)
9.9语义分割和数据集
9.10FCN全卷积网络
9.11样式迁移
最后更新于