classTrieNode:def__init__(self): self.end=False# 表示是否存在某个结点 self.children=collections.defaultdict(TrieNode)# 儿子字典,所有键默认为TrieNodeclassTrie:def__init__(self):""" Initialize your data structure here. """ self.root =TrieNode()definsert(self,word:str) ->None:""" Inserts a word into the trie. """ node = self.rootfor s in word: node = node.children[s]# node.children[s]默认为TrieNode,这里自动新建儿子 node.end =True# print("insert " + word)defsearch(self,word:str) ->bool:""" Returns if the word is in the trie. """ node = self.root# print("search " + word)for s in word: node = node.children.get(s)# 获得键s,没有则返回Noneif node isNone:# 前缀匹配失败returnFalseif node.end:# 该字符有结尾,即匹配成功returnTrueelse:returnFalsedefstartsWith(self,prefix:str) ->bool:""" Returns if there is any word in the trie that starts with the given prefix. """ node = self.rootfor s in prefix: node = node.children.get(s)# 获得键s,没有则返回Noneif node isNone:# 前缀匹配失败returnFalsereturnTrue
677:键值映射
在实现前缀树的方法中,修改END为val,代表有无值,默认为0
计算总和时候,历匹配前缀后,bfs遍所有儿子结点的值
421:数组中两个数的最大异或值
首先计算数组中最大数的二进制长度 L。
初始化 max_xor = 0。
从 i = L - 1遍历到 i = 0(代表着从最左侧的比特位 L - 1遍历到最右侧的比特位 00):
class Solution:
def findMaximumXOR(self, nums: List[int]) -> int:
L = len(bin(max(nums))) - 2 # 最大数值的二进制长度
max_xor = 0
for i in range(L)[::-1]: # 从最大位开始遍历
# go to the next bit by the left shift
max_xor <<= 1
# curr_xor的最后一位默认为1
curr_xor = max_xor | 1
# compute all existing prefixes
# of length (L - i) in binary representation
prefixes = {num >> i for num in nums} # 所有前缀
# Update max_xor, if two of these prefixes could result in curr_xor.
# Check if p1^p2 == curr_xor, i.e. p1 == curr_xor^p2
# print(max_xor,curr_xor, prefixes)
max_xor |= any(curr_xor^p in prefixes for p in prefixes)
return max_xor