1.3神经网络
import torch
# 神经网络的包,仅支持小批量样本的训练,不支持单个样本(可以input.unsqueeze(0)来模拟批量[1])
import torch.nn as nn
import torch.nn.functional as F # 一些常用的函数
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 3) # 卷积核
self.conv2 = nn.Conv2d(6, 16, 3) # 卷积核
# Linear是简单的映射函数,第一个参数w的维度,第二个参数b的维度
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6是图片的长宽
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) # 最后输出10个分类
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # 最大二维池化层:2*2格子内取最大
x = F.max_pool2d(F.relu(self.conv2(x)), 2) # 第一个参数的结果是笔直的向量
x = x.view(-1, self.num_flat_features(x)) # -1表示自动计算,view是改变形状
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x): # 每个输入变平后的数量大小
size = x.size()[1:] # 获得除了批量大小的所有维度
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net) # 获取当前模型的数据
Net(
(conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
(fc1): Linear(in_features=576, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
params = list(net.parameters())
print(len(params)) # 自动学习参数的数量
print(params[0].size()) # 6*1*3*3 ,conv1的权重
10
torch.Size([6, 1, 3, 3])
print(params[1]) # conv1的偏移
Parameter containing:
tensor([ 0.0176, 0.2514, 0.1497, 0.1647, -0.2829, 0.0409],
requires_grad=True)
input = torch.randn(1,1,32,32)
out = net(input)
print(out) # 输出,数值最大的是正确分类,但一开始没有训练是随机的
tensor([[ 6.9398e-03, -6.6113e-05, -6.9214e-02, -7.6395e-02, 3.9166e-02,
-7.0978e-02, 1.2993e-02, -1.7690e-02, -1.4292e-02, -4.7204e-02]],
grad_fn=<AddmmBackward>)
net.zero_grad() # 设置所有梯度为0
out.backward(torch.randn(1,10)) # 设置随机数为梯度
output = net(input)
target = torch.randn(10) # 假设一个假的结果
target = target.view(1, -1) # 变为[1,10]形状
criterion = nn.MSELoss() # 均方误差
loss = criterion(output, target)
print(loss)
tensor(0.7828, grad_fn=<MseLossBackward>)
"""
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu(3) -> linear(2)
-> MSELoss(1)
-> loss
"""
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
<MseLossBackward object at 0x7fefaac1c8d0>
<AddmmBackward object at 0x7fefaac1ca90>
<AccumulateGrad object at 0x7fefaac1c8d0>
net.zero_grad()
print('conv1.bias.grad before backward') # 反向传播之前
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward') # 反向传播后
print(net.conv1.bias.grad)
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0158, -0.0015, -0.0017, 0.0073, 0.0074, -0.0123])
# 更新权重
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate) # sub_是减等于
import torch.optim as optim # 优化算法包
optimizer = optim.SGD(net.parameters(), lr=0.01) # 创建优化算法器
optimizer.zero_grad() # 初始化梯度为0
output = net(input) # 前向传播
loss = criterion(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新权重
最后更新于
这有帮助吗?